If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50-16t^2=0
a = -16; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-16)·50
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-16}=\frac{0-40\sqrt{2}}{-32} =-\frac{40\sqrt{2}}{-32} =-\frac{5\sqrt{2}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-16}=\frac{0+40\sqrt{2}}{-32} =\frac{40\sqrt{2}}{-32} =\frac{5\sqrt{2}}{-4} $
| 7+n*2=11 | | T+4x+4x=0 | | 2(y-11)=10 | | -(x+3)+8=35 | | 1/2(60m+10)=15 | | -6+6(b-7)=-96 | | 36y^2-32y=0 | | 4x-2=-4x-42 | | 40x=-18x | | -7(-3n+3)=21+21n | | x-12=2x-24 | | 0.8x-11-0.3=38 | | 5/6=-10x | | 18+4(3x-9)=-70 | | 5x+55=6x | | 39=9v–6 | | 5=4÷x | | (x+)(x-)=x2+x-20 | | -0.8a-8=2a | | 60t=50(.25(t)) | | 18-2x=5x-3 | | 60t=50(1/5(t)) | | 3(x-1)+2=x | | 6(3z-1)=8(z+6) | | 62-2p=58 | | -2(w+6)+8=-18 | | -2(w+6)+8=18 | | -6-4x=2x+12 | | 102=3(6-7n) | | -3=n÷15 | | -7=w/8+3 | | 4c^2-2c-15=0 |